Control of RNA Polymerase Formation
نویسندگان
چکیده
منابع مشابه
Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملCrl facilitates RNA polymerase holoenzyme formation.
The Escherichia coli Crl protein has been described as a transcriptional coactivator for the stationary-phase sigma factor sigma(S). In a transcription system with highly purified components, we demonstrate that Crl affects transcription not only by the Esigma(S) RNA polymerase holoenzyme but also by Esigma(70) and Esigma(32). Crl increased transcription dramatically but only when the sigma con...
متن کاملControl of formation of two distinct classes of RNA polymerase II elongation complexes.
We have examined elongation by RNA polymerase II initiated at a promoter and have identified two classes of elongation complexes. Following initiation at a promoter, all polymerase molecules enter an abortive mode of elongation. Abortive elongation is characterized by the rapid generation of short transcripts due to pausing of the polymerase followed by termination of transcription. Termination...
متن کاملDiscontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex
A central enigma of transcriptional regulation is how the normally efficient transcription elongation complex stops at pause and termination signals. One possibility, raised by the discovery that RNA polymerase sometimes contracts its DNA footprint, is that discontinuous movements contribute to recognizing these signals. We report that E. coli RNA polymerase responds to sequences immediately do...
متن کاملGenetic control of RNA polymerase I-stimulated recombination in yeast.
We examined the genetic control of the activity of HOT1, a cis-acting recombination-stimulatory sequence of Saccharomyces cerevisiae. Mutations in RAD1 and RAD52 decrease the ability of HOT1 to stimulate intrachromosomal recombination while mutations in RAD4 and RAD50 do not affect HOT1 activity. In rad1 delta strains, the stimulation of excisive recombination by HOT1 is decreased while the rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Seibutsu Butsuri
سال: 1977
ISSN: 0582-4052,1347-4219
DOI: 10.2142/biophys.17.277